2,758 research outputs found

    Multiplier phenomenology in random multiplicative cascade processes

    Full text link
    We demonstrate that the correlations observed in conditioned multiplier distributions of the energy dissipation in fully developed turbulence can be understood as an unavoidable artefact of the observation procedure. Taking the latter into account, all reported properties of both unconditioned and conditioned multiplier distributions can be reproduced by cascade models with uncorrelated random weights if their bivariate splitting function is non-energy conserving. For the alpha-model we show that the simulated multiplier distributions converge to a limiting form, which is very close to the experimentally observed one. If random translations of the observation window are accounted for, also the subtle effects found in conditioned multiplier distributions are precisely reproduced.Comment: 4 pages, 3 figure

    Cumulant ratios in fully developed turbulence

    Get PDF
    In the context of random multiplicative cascade processes, we derive analytical solutions for one- and two-point cumulants with restored translational invariance. On taking ratios of cumulants in ln epsilon, geometrical effects due to spatial averaging cancel out. These ratios can successfully distinguish between splitting functions while multifractal scaling exponents and multiplier distributions cannot.Comment: 9th Workshop on Multiparticle Production (Torino), 9 pages latex, incl 9 figs and espcrc2.st

    Analytic multivariate generating function for random multiplicative cascade processes

    Full text link
    We have found an analytic expression for the multivariate generating function governing all n-point statistics of random multiplicative cascade processes. The variable appropriate for this generating function is the logarithm of the energy density, ln epsilon, rather than epsilon itself. All cumulant statistics become sums over derivatives of ``branching generating functions'' which are Laplace transforms of the splitting functions and completely determine the cascade process. We show that the branching generating function is a generalization of the multifractal mass exponents. Two simple models from fully developed turbulence illustrate the new formalism.Comment: REVTeX, 4 pages, 2 PostScript figs, submitted to PR

    The Markovian metamorphosis of a simple turbulent cascade model

    Full text link
    Markovian properties of a discrete random multiplicative cascade model of log-normal type are discussed. After taking small-scale resummation and breaking of the ultrametric hierarchy into account, qualitative agreement with Kramers-Moyal coefficients, recently deduced from a fully developed turbulent flow, is achieved.Comment: 6 pages, 2 figure

    Prospects for parity-nonconservation experiments with highly charged heavy ions

    Get PDF
    We discuss the prospects for parity-nonconservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with 2–5 electrons are calculated. We investigate two-photon transitions and the possibility of observing interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations

    Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis

    Full text link
    We present a new high-resolution global renewable energy atlas ({REatlas}) that can be used to calculate customised hourly time series of wind and solar PV power generation. In this paper, the atlas is applied to produce 32-year-long hourly model wind power time series for Denmark for each historical and future year between 1980 and 2035. These are calibrated and validated against real production data from the period 2000 to 2010. The high number of years allows us to discuss how the characteristics of Danish wind power generation varies between individual weather years. As an example, the annual energy production is found to vary by ±10%\pm10\% from the average. Furthermore, we show how the production pattern change as small onshore turbines are gradually replaced by large onshore and offshore turbines. Finally, we compare our wind power time series for 2020 to corresponding data from a handful of Danish energy system models. The aim is to illustrate how current differences in model wind may result in significant differences in technical and economical model predictions. These include up to 15%15\% differences in installed capacity and 40%40\% differences in system reserve requirements

    Translationally invariant cumulants in energy cascade models of turbulence

    Full text link
    In the context of random multiplicative energy cascade processes, we derive analytical expressions for translationally invariant one- and two-point cumulants in logarithmic field amplitudes. Such cumulants make it possible to distinguish between hitherto equally successful cascade generator models and hence supplement lowest-order multifractal scaling exponents and multiplier distributions.Comment: 11 pages, 3 figs, elsart.cls include
    • …
    corecore